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ABSTRACT: Quantifying the amount of carbon stored in tropical forests is needed to inform climate mitigation
mechanisms such as Reducing Emissions from Deforestation and Forest Degradation (REDD+). Remote sensing is a
cost-effective tool to accurately estimate aboveground forest carbon stocks. Studies that use data from multiple sensors for
estimating aboveground forest carbon, however, remain limited despite their tremendous potential. We estimated
aboveground forest carbon stocks using multiple linear regression modeling between forest inventory data and satellite data,
specifically L-band synthetic aperture radar (SAR) and Landsat, in three study sites in the Philippines. Models built using
data from individual sensors versus combined multi-sensor data were assessed to determine which produced more accurate
estimates of aboveground forest carbon. Subsequently, the accuracy of a global model developed from forest plot data
across sites, was compared against site-specific models. Across sites, results showed that models using combined
multi-sensor data performed better than those using individual sensors, with higher accuracies obtained for larger plot size
(R?=0.82-0.93; RMSE=27.20-42.92 Mg C ha™1). Textural attributes made up the majority of predictors in these combined
sensor models and contributed to improved accuracies and reduced uncertainties in carbon estimates. The global model did
not perform better than site-specific models, regardless of sensor data or plot size, which suggests that the predictive power
of the global model may be influenced by inherent site-specific variabilities (e.g., forest characteristics and forest inventory
methods). Combining multi-sensor satellite data offers an improved approach for estimating aboveground forest carbon,
with larger forest plot sizes contributing to this improvement, thus leading to higher accuracies and lower uncertainties for
spatially explicit carbon mapping in dense tropical forest regions.

1. INTRODUCTION

The largest contributors to carbon dioxide (CO,) emissions since the 1990s are deforestation and forest degradation (Gibbs
etal., 2007; Pan et al., 2011). Due to the lack of forest plot data in South East Asia, estimates of carbon stocks and fluxes in
tropical forests usually have large uncertainties. These uncertainties can lead to over- or underestimation of carbon emission
reduction, which is crucial for carbon finance mechanisms (Pelletier et al., 2012).

A cost-effective way to measure and monitor spatially explicit estimates of aboveground forest carbon stocks (AFCS) is by
calibrating spaceborne remote sensing data using forest inventory data (Rodriguez-Veiga et al., 2017). This method is
usually based on a single sensor (Kajisa et al., 2009; Thapa et al., 2015a), but recent studies have increasingly focused on
using multiple sensors to estimate AFCS (Santoro & Cartus, 2018). Nevertheless, AFCS estimates using combined sensors
and forest inventory data are limited, especially in South East Asia. Furthermore, the effects of variable forest inventory
design, forest type, and geography on the accuracy and precision of AFCS estimates are poorly understood (Dupuis et al.,
2020; Miettinen et al., 2014).
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This research pooled available forest inventory datasets with variable sampling designs to estimate AFCS in three sites in
the Philippines. We developed multiple linear regression models between the satellite data (L-band SAR and Landsat) and
forest inventory data for each site. Two research questions were pursued: 1) are estimates of AFCS from combined sensor
data better than estimates from individual sensors, 2) will a “global”’-model based on the pooled forest plot data from all
three sites perform better than site-specific models?

2. STUDY SITES
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Figure 1. The location of the selected sites in the Philippines.

Aboveground forest carbon stocks were estimated for three study sites: (1) Northern Sierra Madre Natural Park (NSM) in
northern Philippines (~17°18° N, 122°5” E) with a land area of 3,595 km?, (2) Southern Leyte (SLY) in central-eastern
Philippines (~10°50° N, 124°50° E) with a land area of 392 km?, and (3) Victoria Anepahan Mountain range (VAM) in
central-western Philippines (~9°19° N, 118°13” E) with a land area of 952 km?. All three sites were identified as
sub-national pilot demonstration sites under the Philippines National REDD+ Strategy (DENR — FMB, 2017, Philippine
National REDD+ Strategy Team et al., 2011) (Fig. 1).

The three study sites contain mountainous terrains with tropical rainforest climate, except for VAM that has a tropical
savanna climate (Peel et al., 2007). The selected study sites were either Key Biodiversity Areas or encompassed one — Mt.
Nacolod in the case of SLY (Conservation International — Philippines et al., 2006; UNESCO World Heritage Centre, 2021).
NSM is also the largest protected area in the country under the National Integrated Protected Areas System (Republic Act
9125 of 2001). The study areas host many endemic and globally threatened species; in SLY, recently discovered species of
cloud forest frog (Playtmantis navjoti), and new island records such as Cebu cinnamon (Cinnamomum cebuense) and Little
slaty flycatcher (Ficedula basilanica), among others (Diesmos et al., 2020; Mallari et al., 2013). Furthermore, these sites are
the homes of several indigenous tribes such as the Agta or Dumagat (Minter et al., 2014) in NSM and the Pala’wan and
Tagbanua (Eder, 1990) in VAM.

Deforestation and forest degradation at all three sites were driven by shifting cultivation, commercial agricultural
production, illegal logging, and mining and road development (Carandang et al., 2013; Fernando et al., 2008). The
topographic features of NSM made the site inaccessible, which helped keep its forests intact. Hence, NSM is one of the most
extensive and contiguous remaining forests in the Philippines (Fernando et al., 2008; Whitmore, 1984). Meanwhile, the
commercial logging ban by the Strategic Environmental Plan for Palawan Act (Republic Act 7611 of 1992) (Singh et al.,
2017) has aided in preserving large tracts of forests in VAM.

3. DATA AND METHODS

3.1 Field Data

In all study sites, forest inventory data were collected including tree height, diameter at breast height (dbh), and
species-level tree identification. Handheld global positioning system (GPS) receivers were used to record the geographic
coordinates of all the sampling plots. Most of the plots in the three sites were distributed in both closed and open forests, but

for SLY, some plots were in shrubs and wooded grassland.

For VAM, trees within the square plots were measured using two sampling methods: (i) nested sampling in 45 plots; and (ii)
full sampling in 20 plots. For the nested sampling, trees were measured as follows: (a) all trees with 10-30cm dbh within a



The 42" Asian Conference on Remote Sensing (ACRS2021)
22-24" November, 2021 in Can Tho University, Can Tho city, Vietnam

20x20m square plot, (b) all trees >10cm dbh within a 50x20m plot, and (c) all trees >30cm dbh within the 50x50m plot. For
the full sampling, all trees with dbh >5cm were measured within the 50x50m square plots. Four 50x50m square plots were
arranged such that they were adjacent to each other to create a larger square plot with a total area of 1.0 ha (100x100m).
Hence, five 1-hectare plots were randomly located in VAM (De Alban et al., 2014; Fauna & Flora International, 2014).

Table 1. Summary of forest inventory methods in the three sites.

Study Site  Sampling Design Shape Size (Areain ha)
NSM Stratified systematic grid sampling 20-m radius nested circular plots 0.126

SLY Stratified systematic grid sampling 12-m nested circular plots 0.045

VAM Random Sampling 50x50m square plots 0.25

The 122 forest inventory plots for NSM were composed of nested circular plots with three radiuses — 4m, 14m and 20m.
Within the smallest nested circular plot (4m), trees with 5-20cm dbh were measured, while in the 14m plots, trees with
20-50cm dbh; and in the biggest plot (20m), all trees with > 50 cm dbh (Monzon et al., 2015). Like NSM, the forest
inventory in SLY was also composed of nested circular plots but with different radiuses — 6m and 12m. Within the smaller
plot (6m), trees with 6-20cm dbh were measured, while in the bigger plot (12m), trees with >20cm dbh. The forest inventory
for SLY utilised a cluster approach such that each plot was in the four cardinal directions that were 50m from the center of
the cluster. This cluster approach allowed the inventory of 382 circular plots for SLY (Schade & Ludwig, 2013).

To calculate carbon stocks, the biomass content of each tree measured in the field inventory was determined using Brown’s
equation (Eq. 1) (Brown, 1997; Pearson et al., 2005):

AGB = exp [-2.289 + 2.649 x (In D - 0.021) x In D?] 1)

where AGB is the aboveground dry biomass (kg) and D is the diameter at breast height (dbh in cm). Since there is no
country-specific allometric equation in the Philippines, Brown’s equation was used to estimate biomass and because the
equation was conservative in its various biomass and carbon estimations (Lasco et al., 2013; Lasco & Pulhin, 2009; Sullivan
et al., 2017). Aboveground forest carbon stock (AFCS) is 50% of the dry biomass values (GOFC-GOLD, 2016) and
extrapolated using an expansion factor (Eq. 2). The resulting forest carbon values (Mg C ha*) were used for succeeding
regressions.

Expansion Factor = 10,000 m? + area of plot 2
3.2 Satellite Image Data

Advanced Land Observing Satellite (ALOS-1 and ALOS-2) Phased Array L-band Synthetic Aperture Radar (PALSAR-1
and PALSAR-2) global 25-meter dual-polarisation mosaics (2007-2010 and 2015-2017, respectively) and Tier 1 calibrated
top-of-the-atmosphere reflectance Landsat image collection that were available at the time of processing in the Google
Earth Engine (GEE) Data Catalog (https://explorer.earthengine.google.com) were used for this study. GEE, a cloud-based
geospatial analysis platform (Gorelick et al., 2017), was used to implement the mosaic data extraction, image stacking, and
majority of the image processing to prepare the inputs to the modeling.

Prior to the calculation of indices and texture measures, the initial radar image stack had 14 layers corresponding to the HH
(horizontal transmit — horizontal receive) and HV (horizontal transmit — vertical receive) polarisation channels of each
available year, which were exported from GEE and imported into the European Space Agency’s Sentinel Application
Platform (SNAP) Toolbox (https://step.esa.int/main/toolboxes/snap/) to implement a multi-temporal speckle filtering
process. A Lee Sigma multi-temporal speckle filter was employed, which enables filtering without compromising spatial
resolution and achieving better radiometric resolution (Quegan & Yu, 2001). The multi-temporal speckle-filtered HH- and
HV-polarised images were converted into normalised radar cross-sections using the equation from Shimada et al. (2009)
and were used to generate the six radar indices.

For the optical imagery, using the best-available-pixel compositing method (Griffiths et al., 2013; White et al., 2014),
near-cloud-free 30-meter Landsat composites for each study site were generated from available satellite images across all
missions.

Table 2. Summary of combined L-band SAR and Landsat image stacks per study site.

Sensor NSM SLY VAM
L-band ALOS-2/PALSAR-2 ALOS/PALSAR ALOS/PALSAR
SAR - 2015 mosaic - 010 mosaic - 010 mosaic
(88 - 2 polarisations - polarisations - polarisations
layers) - 6 indices - indices - indices

- 80 GLCM textures - 0 GLCM textures - 0 GLCM textures
Landsat L7 ETM+/L8 OLI L5 TM/L7 ETM+ L7 ETM+ /L8 OLI

(252 - 2014 composite - 011-2012 composite - 013 composite
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layers) - 7 bands - bands - bands
- 5 indices - indices - indices
- 240 GLCM textures - 40 GLCM textures - 40 GLCM textures

Second-order texture measures from the radar (HH and HV-polarised sigma nought) and optical (blue, green, red,
near-infrared and two shortwave infrared bands) images were calculated using the GEE platform. Grey-Level
Co-occurrence Matrices (GLCM) were calculated to derive the eight texture measures for each SAR and each Landsat
image.

Table 3. Summary of all radar and optical indices and GLCM textures.

Band Source

Radar HH over HV (SAR Index 1 or HHoHV)
HV over HH (SAR Index 2 or HVoHH)
SAR Average (AVE)
SAR Difference (DIF)
Normalised Difference Index (NDI; also known as the Forest

Degradation Index, RFDI) (Almeida-Filho et al., 2009)

Normalised Index (NLI) (Lietal, 2012)

Optical Enhanced Vegetation Index (EVI) (Huete et al., 1997, 2002)
Land Surface Water Index (LSWI) (Gao, 1996; Jurgens, 1997)
Normalised Difference Tillage Index (NDTI) (van Deventer et al., 1997)
Normalised Difference Vegetation Index (NDVI) (Rouse et al., 1974; Tucker, 1979)
Soil-Adjusted Total Vegetation Index (SATVI) (Hagen et al., 2012; Marsett et al., 2006)
Enhanced Vegetation Index (EVI) (Huete et al., 1997, 2002)

GLCM Contrast (CON), Dissimilarity (DIS), Inverse difference

Textures moment (IDM), Angular second moment (ASM), Entropy (Haralick et al., 1973)
(ENT), Mean (AVG), Correlation (COR), Variance (VAR)

Image statistics from all layers of the final image stacks were extracted onto each forest plot polygon. For each site, three
input datasets including the total forest carbon estimate per plot were assembled as follows: PALSAR-only, Landsat-only,
and combined PALSAR and Landsat variables. The R software environment (R Core Team, 2020) was used to perform data
handling, model calibration and validation, and creation of plots.

3.3 Modeling

A multiple linear regression approach was adopted to model the relationship between extracted sensor variables from radar
and optical satellite data (predictors) and field-measured aboveground forest carbon (response). A total of 12 models were
developed — three sensor data types for each study site, and additional three more for VAM?’s full sampling plots. Model
calibration was done stepwise to determine the combination of variables with the greatest explanatory power and minimal
multicollinearity. The predictor with the highest R-squared (R?) to the response variable was added first. Subsequent steps
involved including the predictor resulting in the lowest p-value (F-test) and removing any non-significant predictors
(p-value > 0.05, T-test); steps end when the added predictor was also removed. The fit of the final model was then evaluated
using R% and Root Mean Square Error (RMSE).

Model performance was evaluated using the 10-fold cross-validation strategy. Three metrics of model performance were
calculated: R?, RMSE, and the Kling-Gupta Efficiency (KGE; Eq. 3) (Gupta & Kling, 2011). KGE was defined as

KGE =1—+/(r—1)2+(a —1)2+(§ — 1)° ®
where r is the correlation, a the ratio of means, B the ratio of standard deviations, between observed and predicted AFCS
values. Accurate models yield high R? and KGE, while lower RMSE indicates less uncertainties for the model’s carbon
estimates.

‘Global’ models were calibrated and evaluated similarly to site-specific models but used the field-measured aboveground
forest carbon from all three sites. For comparability of model performance scores, global models were evaluated with the
same testing data used to evaluate the site-specific models (i.e., each testing fold).

4. RESULTS

Four forest plots in NSM and SLY had very high AFCS (>1000 Mg C ha™), but most forest plots had carbon values of
0-400 Mg C ha*.

Table 4. Summary of AFCS in forest inventory plots

Site AFCS (Mg C ha)
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Mean Range
NSM 361.40 100-400
SLY 154.24 0-200
VAM (nested) 213.01 200-300
VAM (full) 237.44 200-300

The combined sensor models outperformed the models calibrated using individual sensors, for all study sites (higher R? and
lower RMSE) (Fig. 2). Although for NSM and SLY, their models yielded relatively low R? and high RMSE values, even
against the individual sensor models of VAM. SLY’s best model had an R? value lower than the best model for NSM, which
had a plot size thrice as big as the plots of SLY (Table 5). The RMSE for SLY was also relatively lower than that of NSM,
but relative to the dominant range of carbon values in the two sites, the RMSE is still high. The combined sensor models for
VAM (nested and full sampling) produced high R? (0.82 and 0.93) and low RMSE (42.92 Mg C ha* and 27.20 Mg C ha™®).
The combined sensor global models also outperformed the global models calibrated using individual sensors. However,
compared to all the site-specific models using combined sensors, the best global model still performed poorly.

Table 5. Model calibration results for models applied at site level and across all study sites to estimate aboveground forest carbon
using combined sensor data. Metric scores show R? and RMSE (in Mg C ha!) for evaluating model fit.

RMSE
Model Model Equation R? (Mg C
ha-1)

NSM (Nested; 0.126 ha)

NSM- “47341.27 + 2195252.90HH_K5_ASM — 1580.46B3_K11_ENT + 1369.68B3_K9 ENT —  0.39 300.87
Model-3  537.82B4_K5_COR - 431372.28HV_K5_ASM - 694.26HV_K7_COR —

32759.79HH_K5_IDM — 2132.00B6_K7_IDM + 7.99B3_K5_VAR + 483.74B2_K7_COR

~3.43B4 K11 VAR

SLY (Nested; 0.045 ha)

SLY- 1372.19 + 0.03HV_K11_AVG - 254.46B7_K7_COR + 2.01HV_K11_VAR + 0.28 177.89
Model-3  13.43B4_K5 AVG - 19.17B6_K11 DIS + 0.04B5_K9 VAR + 0.07NLI —

6.015B3_K3_AVG + 798.24LSWI + 109.14B6_K3_COR - 11397.39B7_K7_ASM —

5.62B3 K11 AVG - 14.78B2_K5 DIS

VAM (Nested; 0.25 ha)

VAM-  —15768.63 + 1.91B7_K11_VAR + 0.10HV_K11_AVG + 135.72B4_K3_IDM + 0.82 42.92
Model-3  5030.31HH_K5_ENT + 1782.07B5_K11_IDM + 0.15HH_K7_DIS —

0.0002HV_K11_CON +0.35B6_K11 VAR - 132.85B2_K3_COR + 466.37B6_K3_IDM —

0.05DIF + 224.85B6_K5_COR — 1133.08B6_K9_IDM — 119.39B5_K5_COR +

0.33HH_K11 DIS + 0.50B2_K7 CON + 2447.94B3_K11 ASM

VAM (Full; 0.25 ha)

VAM-  3267.79 + 0.03AVE + 369350.37HV_K3_IDM — 597.09B7_K11_COR — 0.93 27.20
Model-6  59248.92B6_K5_ASM + 28513.65HV_K5_IDM — 776.84HH_K11_COR —

298.02B3_K3_ENT - 114.38B7_K3_COR + 286.63B5_K7_COR — 628.06SATVI —

3757.41B4_K7_ASM

Across all study sites

Global-  —75859.24 — 27.12B6_K11_DIS + 10.47B5_K7_DIS - 131.16B2_K11_ENT - 734.06NDTI 0.24 230.61
Model-3  +110.06B2_K3_ENT - 142.04HV_K3_COR + 13290.14HH_K5_IDM +

14979.35HH_K11_ENT - 3912.62HH_K3_IDM — 27249.85HV_K3_ASM +

297.23B2_K11_COR - 219.31B4_K7_COR + 26.81HVg0 — 0.04DIF —

179.36B3_K3_IDM

In addition to the acronyms of the indices and texture measures listed in Table 3, additional acronyms of predictor variables
used in Table 5 area as follows: (1) Predictors related to SAR data include horizontal transmit — vertical receive (HV),
horizontal transmit — horizontal receive (HH), HH or HV backscatter coefficient (HHgO, HVQO0); (2) Predictors related to
Landsat data include blue (B2), green (B3), red (B4), near-infrared (B5), shortwave infrared 1 (B6), and shortwave infrared
2 (B7). The neighbourhood kernel/window sizes of the texture measures range from 3x3 (K3), 5x5 (K5), 7x7 (K7), 9x9 (K9),
until 11x11 (K11).
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Figure 2. Comparison of field-measured vs model-predicted aboveground forest carbon stocks from models of different sensor
data types in (a) NSM (nested sampling plots), (b) in SLY (nested sampling plots), (c) VAM (nested sampling plots) and (d) VAM
(full sampling plots).

After using a 10-fold cross validation strategy, the results of the model evaluation for combined sensor models were mostly
lower than the calibration results. For NSM and VAM (both nested and full sampling), the evaluation R? was lower than the
calibration R?, while evaluation RMSESs were higher than calibration RMSEs, which indicated a decrease in model accuracy
and model uncertainty, respectively. NSM-Model-3 had an R? of 0.25+0.16 and KGE of 0.06+0.31, and RMSE of
349.68+137.82 Mg C ha™. For VAM, VAM-Model-3 (nested sampling) had an R? of 0.50+0.31, KGE of 0.50+0.33, and
RMSE of 57.21+8.19 Mg C ha™*, whereas VAM-Model-6 (full sampling) had an R? of 0.62+0.36, KGE of —3.70+13.05, and
RMSE of 36.57+20.14 Mg C ha-. While SLY and the global models had higher evaluation R? than calibration RZ and lower
evaluation RMSEs than calibration RMSEs, their R? and KGE values were still lower than that of VAM’s models with
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nested sampling plots. SLY’s model with best evaluation results was SLY-Model-3 with R? of 0.32+0.12, KGE of
0.32+0.20 and RMSE of 172.92+78.33 Mg C ha™. Global-Model-3 had an R? of 0.21+0.26, KGE of —1.17+6.17 and RMSE
of 188.78+137.25 Mg C ha™™.

5. DISCUSSION

This study demonstrated that combined L-band SAR and optical data improved model estimations of AFCS in the
Philippines, as also demonstrated by other studies in South East Asia (Cutler et al., 2012; Lang et al., 2021; Pham et al.,
2020). Previous studies also showed how model accuracies were improved and uncertainties reduced when textural
attributes were included as model predictors in estimating aboveground forest carbon in optical (Kelsey & Neff, 2014) and
SAR data (Thapa et al., 2015a; Thapa et al., 2016). The aggregation process of the neighborhood sizes (large kernel sizes)
used in texture analysis might be the reason why the performance of models improved when textural attributes were
considered. The neighborhood/kernel-based aggregation of textural attributes may explain improvements in model
performance. This might also be addressing a) possible positional errors between satellite and forest plot data, b) speckle
noise in SAR data, and c) saturation problems in L-band SAR for biomass estimation in dense tropical forests. L-band SAR
textures did not only help identify changes in canopy structure in regenerating tropical forests (Luckman et al., 1997), but
also captured the spatial variation of tropical forest canopy structure as well as the increase in roughness and complexity of
maturing tropical forests (Kuplich et al., 2005). Optical data textures correlated with tropical forest biomass and improved
AFCS estimation (Eckert, 2012; Lu, 2005). Hence, it would be crucial to utilise textural attributes from multiple sensors to
accurately estimate AFCS and to monitor carbon fluxes in areas with forest disturbances like in South East Asia (Kelsey &
Neff, 2014).

All site-specific models using combined sensor data outperformed the global combined sensor model, which aligned with
previous studies (Cutler et al., 2012; Foody et al., 2003). The global model in this study did not perform very well compared
to Cutler et al.’s (2012) global model, possibly due to similar forest characteristics between the three inter-country study
sites. This suggests that using pooled datasets from various forest inventories, even with combined sensor data, could
generate unreliable model estimates at larger scales (i.e., country, or regional) if forest characteristics varied substantially
across forest landscapes.

We demonstrate that better remotely sensed AFCS estimates can be achieved using larger forest inventory plot sizes.
Despite having fewer large plots (45 nested, 20 full sampling plots) for VAM, better carbon estimates were achieved
compared to the hundreds of smaller plots in NSM (122) and SLY (382), possibly because smaller plots are limited by their
ability to capture the spatial heterogeneity of forest characteristics. Larger plots covered more neighboring pixels, which did
not only enable it to account for the spatially varying characteristics of dense tropical forests (Asner et al., 2010) but also
minimised plot-edge effects, where uncertainties arise due to the inclusion/exclusion of a tree in forest inventories (Packalen
et al., 2015; Pascual et al., 2019).

Full tree sampling of large plots in VAM produced better model-predicted AFCS estimates than the nested plots. This was
expected since full sampling did not rely on extrapolations of tree biomass calculations for the plot, as it did for nested plots,
which introduced the uncertainty into the calculations. These findings were consistent with other studies such as that in
Indonesia where all trees larger than 5 cm were measured in one-hectare plots and obtained good model performance (R?
0.73-0.87 and RMSE 17.4-30.9 Mg C ha'!) (Thapa et al., 2016; Thapa et al., 2015a; Thapa et al., 2015b), while in Malaysia,
0.126-ha circular nested sampling plots were used and obtained low model performances using L-band SAR only (R?
0.3541; RMSE 116.91 Mg C ha™) or using multi-frequency SAR data (R? 0.356; RMSE 98.41 Mg C ha™*) (Omar et al.,
2017; Omar & Misman, 2018).

Spatially explicit forest carbon datasets can provide reliable estimates for nature-based solutions like the United Nations
REDD+ mechanism (UNDP, 2021). Statistics of biomass stocks of different forest types are obtained using conventional
forest plot networks that utilise nested sampling approaches (IPCC, 2006; Walker et al., 2012) and are not designed to
capture changes that could affect carbon stocks differently (Avitabile et al., 2011). However, if the intention is to quantify
AFCS using field-calibrated remote sensing data, then field measurements from conventional forest inventories will yield
unreliable model estimates of AFCS, even with combined sensor data.

The possible sources of uncertainties in this study’s AFCS estimates may be from the following: 1) degraded positional
accuracies from handheld GPS receivers under dense forest canopies during forest inventory, 2) a generic tree allometric
model (Brown, 1997), 3) temporal mismatch between dates of field data collection and satellite image composites, and 4)
the large difference between the pixel resolution of the remote sensing data and field measurement plots (Saatchi et al.,
2011).

6. CONCLUSIONS
This study showed that more accurate AFCS estimates can be derived from combined SAR and optical remote sensing data,

instead of estimating from individual sensors. Model accuracy improved and uncertainty estimates were reduced when
combined sensor textural attributes were utilised. Better AFCS estimates were produced from large, fully sampled plots
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compared to small, nested plots. Site-specific models produced better estimates than global models despite using combined
sensors. The ongoing satellite constellations and future satellite missions could provide opportunities to further improve
aboveground forest carbon mapping, which is important for nature-based solutions to better contribute to mitigating climate
change such as REDD+ mechanisms that need improved accuracies and reduced uncertainties to verify spatially explicit
carbon maps in dense tropical forest regions.
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